Clique aqui para ver a relação de artigos anteriores.

Allelopathic interactions between microcystin-producing and non-microcystin-producing cyanobacteria and green microalgae: implications for microcystins production

Maria do Carmo Bittencourt-Oliveira; Mathias Ahii Chia; Helton Soriano Bezerra de Oliveira; Micheline Kézia Cordeiro Araújo; Renato José Reis Molica; Carlos Tadeu Santos Dias
Most mixed culture studies on the allelopathic interactions between toxic and nontoxic cyanobacteria with phytoplankton species rarely investigate the role of microcystins (MC) production and regulation in the course of the studies. This study investigated the interactions between intact cells of toxic (Microcystis aeruginosa (Kützing) Kützing) and nontoxic (Microcystis panniformis Komárek et al.) cyanobacteria with those of green algae (Monoraphidium convolutum (Corda) Komárková-Legnerová and Scenedesmus acuminatus (Largerheim) Chodat) as well as the effects of their respective crude extracts (5 and 10 μg.L−1) on their growth under controlled conditions. M. aeruginosa and M. panniformis were able to significantly (p<0.05) inhibit the growth of the green algae with M. convolutum being the most affected. The green alga S. acuminatus in return was able to inhibit the growth of the both cyanobacteria. In response to the presence of a competing species in the growth medium, M. aeruginosa significantly increased itsMCproduction per cell with the progression of the experiment, having the highest concentration at the end of the experiment. On the other hand, the extracts of the cyanobacteria had no significant inhibitory effect on the green algal strains investigated, while those of the green algae also had significant inhibitory effect on the growth of M. aeruginosa. In conclusion, both cyanobacterial and green algal strains investigated were negatively affected by the presence of competing species. M. aeruginosa responded to the presence of green algae by increasing its MC production.
The green algal strains significantly inhibited the growth of M. aeruginosa.

Characterization of allelochemicals from Pistia stratiotes extracts and their effects on the growth and physiology of Microcystis aeruginosa

Anderson Lourenção, Gustavo F. Mecina, Micheline K. Cordeiro-Araújo, Maria C. Bittencourt-Oliveira, Mathias A. Chia, João L. Bronzel-Júnior, Filipe O. Granero, Luciana P. Silva, Regildo M. G. da Silva

Due to the public and environmental health impact of cyanotoxins, investigations have been focused on finding environmental friendly algaecides from aquatic plants. The present study had the objective to evaluate the population control and physiological response of Microcystis aeruginosa (Kützing) Kützing (strain BCCUSP232) exposed to Pistia stratiotes L. extracts. Aqueous and ethanolic extracts of P. stratiotes at different concentrations (10, 25, and 50 mg L−1) were submitted to M. aeruginosa and reduced significantly (p<0.05) the cyanobacterium cell density. The ethanolic extract presented the greatest growth inhibition of the strain at the highest concentration. During exposure to P. stratiotes extracts, intracellular hydrogen peroxide levels, malondialdehyde content, and antioxidant enzymes (peroxidase, catalase, and glutathione S-transferase) activities increased in M. aeruginosa, while total protein concentration decreased when compared to the control group. Superoxide dismutase (SOD) activities presented a sharp decline, suggesting superoxide radical and peroxide accumulation. This implied that SOD was a target for bioactive substance(s) from aqueous and ethanolic extracts of P. stratiotes. Phytochemical screening of the extracts revealed that the ethanolic extract presented 93.36 mg gallic acid equivalent (GAE) per gram dry weight (g−1 DW) total polyphenols and 217.33 mg rutin equivalent (RE) per gram dry weight total flavonoids, and for the aqueous extract, 5.19 mg GAE g−1 DW total polyphenols and 11.02 mg RE g−1 DW total flavonoids were detected. Gas chromatography (GC)/mass spectrometry (MS) analyses of the ethanolic and aqueous extracts presented palmitic acid ethyl ester as major allelochemical. In view of these results, it can be concluded that P. stratiotes showed potential in controlling M. aeruginosa populations.


Páginas

Artigos